
Real Estate Prediction in NYC
1st Ahmad Shah

School of Systems and Enterprises
Stevens Institute of Technology

Hoboken, United States
sshah6@stevens.

2nd Alexandra Anthony
School of Systems and Enterprises

Stevens Institute of Technology
Hoboken, United States
aanthony@stevens.edu

3rd Moyosola Omole
School of Systems and Enterprises

Stevens Institute of Technology
Hoboken, United States

momole@stevens.edu

Abstract—Abstract:
This study presents the development of a machine learning

model aimed at predicting future property values utilizing
datasets from NYC Open Data. Initial focus was placed on data
pre-processing, where missing values were addressed through
imputation techniques, and feature scaling was standardized
to ensure the dataset was uniform. Cross-validation methods
allowed for model performance assessments and an evaluation of
selected classifiers. Experimentation with cross-validation tech-
niques helped us to discover the most generalized model for
our dataset. Using GridSearchCV, parameter combinations were
explored to enhance model generalizability and accuracy. Evalu-
ation metrics, including ROC curves for classification tasks and
error metrics for regression models, were consistently reported
throughout the project. Visual representation of repeated strati-
fied k-fold cross-validation further developed model performance
across multiple iterations.

I. INTRODUCTION

This paper presents an approach to developing a machine
learning model aimed at predicting future property value using
data sourced from the New York City (NYC) Open Data
using practical implementations and analytical evaluations.
The steps are covered beginning with data pre-processing,
model comparison with various classifiers, cross-validation
techniques, and model optimization. Each stage was designed
to ensure the accuracy of the predictive model. The key steps
involved in the process were data imputation, scaling, model
selection, cross-validation, and optimization.

II. DATA PRE-PROCESSING

A. Data Selection

Initially, we selected Property Valuation and Assessment
Data [1] to base our machine learning algorithm on. However,
after looking over the data, we quickly realized the dataset had
not been updated since 2022. In order to obtain an accurate
model, we added a second data set [2] with records up to
and including 2024.The datasets had similar presentation and
categorical variables as they were from the same source. After
loading in both datasets, we began categorical analysis to
choose and combine the values we want from data frame
(df)1 (2010-2019) and df2 (2021-2025). We first modified the
variable names making them all lowercase for consistency. All
data from 2024-2025 was dropped in order to predict those
values.

Then we ensured that the two pandas dataframes, ‘df2‘
and ‘df3‘, had compatible column names for integration.

Fig. 1. Code Utilized for Column Mapping.

We used a mapping dictionary, ‘columns mapping‘1, which
paired column names from ‘df2‘ with their corresponding
names in ‘df3‘. It filtered and renamed the columns in ‘df2‘
based on the mappings, resulting in a modified dataframe
named ‘df2 renamed‘. It combined the aligned data from
‘df2 renamed‘ with ‘df3‘ or updates ‘df3‘ with the changes,
depending on the operation chosen. This process ensured that
both datasets were aligned and ready for further analysis or
processing.

Fig. 2. Head of df3 After df1 and df2 Concatenation.

Before continuing with data imputation, we decided to
split the data by borough. Since each borough is likely to
exhibit different growth characteristics, we decided to separate
the dataset based on the ’boro’ column. By doing this, we
discovered through the graph in Figure 3 that there was
significantly more data for Brooklyn and Queens. Visualizing
the comparisons between the number of data points before
and after cleaning helps assess the impact of preprocess-
ing operations. It provides a clear snapshot of data loss or



Fig. 3. Bar Graph of Number of Datapoints By Borough.

modification, aiding in understanding dataset reliability. These
visuals enhance data quality assessment and development.

Fig. 4. Bar Graph of Number of Data points Removed By Borough.

As we interpret the graphs above, we can take some
educated guesses about the real estate dynamics across the
NYC boroughs. Since a “zero” valuation is given when a
property does not meet the lending criteria or if further
information is needed to assess the value [3]. Characteristics
such as fire hazards, social issues due to location, or invasive
plants can all trigger a “zero” valuation. So in the context
of the boroughs there’s a lot of information in the null data
visualized in Figure 4. Areas with lower incomes might have
more ’zero’ valuations if they are associated with higher
crime rates or poor infrastructure, which could affect the
ability to sell the property. However, this does not appear to
be directly supported by the data, as the borough with the
fewest dropped data points is the Bronx, which is traditionally
considered one of the less affluent boroughs. Still, boroughs
like Brooklyn and Queens are significantly larger in size. More
processing and analysis regarding the ratios between total data
points and dropped data of each borough is needed to make

more accurate assumptions. This analysis hints at a complex
relationship between property valuations, lending practices,
and the socioeconomic profiles of different boroughs. While
we might guess that affluent areas could have more active
real estate markets and stricter lending standards, the data also
suggest that other factors such as building age, infrastructure,
and risk could impact the real estate market value. Affluent
areas may have less data due to the cost of living as well.
The market may be more active in less affluent areas during
socioeconomic distress. Further analysis will likely produce
more clear insight.

B. Data Imputation
Data imputation is the process of replacing or excluding

missing or null values in a dataset. In our algorithm, the
SimpleImputer class from sklearn is used within a pipeline
structure. We use the dropna() method to eliminate rows
with missing values in specific columns. For instance, df
combined.dropna(subset=[target], inplace=True) removes rows
where the target variable is missing. We removed values that
had missing values so as to not alter any trends. For example,
if a lot is missing a full valuation, we would rather remove
that data, as giving it a mean value for nearby lots would be
nonsensical as the stories of the building may be different or
it may have a vastly different front or back lot-tage. We also
removed the outliers from the code as well using interquartile
range (IQR) in the remove outliers() function to filter them out.
We did this to remove abnormally high or low values such as
the skyscrapers and penthouses. However not all were removed
as we used IQR to remove the most abnormal, as we continue
we will need to address separating the other skyscrapers

C. Scaling
We combined the steps into pipelines using sklearn’s

Pipeline and ColumnTransformer for handling both numeri-
cal and categorical data. For numerical features the pipeline
includes an imputer (using the mean strategy) and a standard
scalar, however we don’t want to scale as we are trying to
predict market value. We also had to process the text data into
a form the computer could understand using sklearn prepro-
cessing module OneHotEncoder. For categorical features an
imputer (filling missing values with a placeholder) is used.

Fig. 5. Column Transformer Set Up.



III. MODEL COMPARISONS

A. Training and Evaluation

After preprocessing the data, different machine learning
models or classifiers were trained and compared to determine
which one performs best for the given task. Upon evaluat-
ing various regression models including Linear Regression,
Random Forest Regressor, and XGBRegressor, we aimed to
select the model that best predicts property values in NYC.
The provided code snippet executed these models and assessed
their performance metrics such as Mean Squared Error (MSE)
and R-squared. The MSE quantifies the average squared differ-
ence between predicted and actual property values, providing
an accuracy measurement. R-squared, on the other hand,
represents the proportion of the variance in the dependent
variable that is predictable from the independent variables.
After thorough evaluation, the XGBRegressor model was the
best choice, with a lower MSE compared to other models.
This indicates that the XGBRegressor model more accurately
predicts property values. Additionally, the high R-squared
value further illustrates the model’s ability to explain variance
in property values. We created a scatter plot comparing the
actual target values against the predicted values. This allowed
us to visually assess how closely the predictions align with
the actual data points. We can also include a line of best fit
to show the general trend.

Fig. 6. Scatter Plot of Actual vs Predicted Property Values

The scatter plot in Figure 6 shows that the predicted
property values align with the actual values, since the points
cluster around the diagonal line. Still, there are a few outliers
at the top right of the graph, indicating where the model’s
predictions deviated from the actual values. These outliers may
represent properties with unique characteristics that are not
captured by the model. The scatter plot provides a visual of
the model’s performance and its ability to accurately predict
property values in NYC.

B. Choosing A Model

We chose to test three different regression models; Random-
ForestRegressor, LinearRegression, and XGBRegressor due
to their modeling approaches. RandomForestRegressor can
handle both classification and regression, and it can capture

non-linear relationships in the data. LinearRegression, was
chosen as a baseline as it assumes a linear relationship between
input features and the target variable. Finally, XGBRegressor,
part of gradient boosting models, was included for its ability
to handle complex non-linear relationships. Following the
evaluation described and visualised previously; XGBRegressor
was the best choice, demonstrating the highest accuracy among
the models we tested.

Fig. 7. Gridsearch results for model n estimators

As the number of estimators increases (from 50 to 200)
as seen in Figure 7, there is a decreasing MSE, indicating
improved model performance with more estimators. This im-
provement in accuracy suggests that increasing the complexity
of the model by adding more estimators leads to better
predictive power, as the model can capture more intricate
patterns in the data. Still, over-fitting needs to be considered
as it occurs when the model becomes too complex and starts
capturing noise in the training data, leading to poor gener-
alization. The graph in Figure 8 reveals a discernible trend

Fig. 8.

where lower MSE values are associated with specific learning
rates, indicating improved model performance. This suggests
that certain learning rates are more effective in minimizing
prediction errors and enhancing the model’s predictive power.



The choice of learning rate is crucial in gradient boosting
algorithms like XGBoost, as it determines the step size during
the optimization process. A smaller learning rate allows for
finer adjustments to the model parameters, potentially leading
to better convergence and lower MSE. Conversely, a larger
learning rate may result in faster convergence, but it could
also lead to overshooting optimal parameter values and higher
MSE. The graph in Figure 8 reveals a trend where lower MSE
values are associated with specific learning rates, indicating
improved model performance.

IV. CROSS-VALIDATION

A. K-Fold Cross-Validation Execution

For K-Fold Cross-Validation, we used the RepeatedKFold
function from the scikit-learn library. The dataset was split into
5 folds, with each fold repeated 3 times, using n splits=5 and
n repeats=3. We created a Linear Regression model within a
pipeline, incorporating preprocessing steps, such as imputation
and scaling as a backup. The model was trained on the
training data (X train, y train) and evaluated on the test data
(X test, y test) for each iteration. MSE was calculated for
each fold, resulting in a Mean MSE of 5.23e+14, with a
Standard Deviation of 9.99e+13.The high mean MSE depicts
the model’s predictions deviated significantly from the actual
values. The large standard deviation suggests variability in
the model across different folds, displaying sensitivity to
training and test data splits. The linear regression model, is
not performing well on this dataset. The mean squared error
and the high standard deviation suggests inconsistencies across
different folds. This might mean that the model is either too
simple for the data or that the features being used are not
informative enough to predict the target variable. Based on
further evaluation of the XGBRegressor model, we infer that
the Linear Regression model is in fact to simple for the data we
are presenting and can be filtered out as a regression choice.

B. K-Fold Cross-Validation Execution

For Grid Search Cross-Validation, we used the Grid-
SearchCV function from scikit-learn.We defined a parameter
grid to search across, specifying different parameters combina-
tions such as learning rate, max depth, and n estimators. The
Grid Search used 5-fold cross-validation (cv=5), with MSE
as the evaluation metric (scoring=’neg mean squared error’).
The model was fitted on the entire dataset (X, y), and the best
combination of parameters was based on the lowest MSE. The
best parameters for the XGBRegressor model are shown in
Table I.

TABLE I
BEST PARAMETERS FOR XGBREGRESSOR

Parameter Value

model learning rate 0.3
model max depth 9
model n estimators 200

TABLE II
MODEL EVALUATION METRICS

Model MSE R-squared Std. Dev.

LinearRegression 5.23× 1014 null 9.99× 1013

RandomForestRegression null null null
XGBRegression 1.37× 1013 0.978 null

The XGBRegressor model had an MSE of 1.37e+13 and
an R-squared value of 0.978. The lower MSE obtained with
the XGBRegressor means it preforms better compared to
the linear regression model. Additionally, the runtime of the
RandomForestRegressor model was unfeasible, which led to
its exclusion from further analysis. All of the data is spec-
ified in Table II. We attempted to perform Leave-One-Out
Cross-Validation (LOOCV) to evaluate the Linear Regression
model’s performance. However, LOOCV had a very slow
execution speed, making it unusable for this project. LOOCV
provides unbiased estimates of model performance, yet, its
runtime increases with larger datasets, making it unrealistic
for real-world applications such as this.

TABLE III
BEST PARAMETERS FOR XGBCLASSIFIER

Parameter Value

model learning rate 0.3
model max depth 6
model n estimators 200

XGBClassifier first sets up and runs a grid search on
an XGBClassifier to predict whether the ’fullval’ value of
properties exceeds 300,000, using features like block number,
tax class, building class, lot front, lot depth, number of stories,
and year. This is a classification problem where outcomes
are categorical (1 if above 300,000, 0 otherwise). The data
undergoes preprocessing where numerical features are scaled
and categorical features are one-hot encoded. The model is
optimized using GridSearchCV for hyperparameters like the
number of estimators, learning rate, and maximum depth,
aiming for the highest accuracy, as depicted in Table III.

In contrast, XGBRegressor uses a process for feature engi-
neering and prediction, which is used for regression problems.
Depicted in Table I, the ’fullval’ itself is predicted as a
continuous variable rather than categorizing its value. The
data preprocessing steps are similar, involving scaling and
encoding. The model, however, uses the XGBRegressor with
settings for regression, including an objective function tailored
for squared errors. The performance of the regression model is
evaluated using the MSE and R-squared value, which measure
prediction accuracy and the proportion of variance in the
dependent variable that is predictable from the independent
variables, respectively. The key difference between these ap-
proaches lies in the nature of the problem and the model.
XGBClassifier is used for classification tasks where the output
is categorical. XGBRegressor is used for regression tasks



TABLE IV
CLASSIFICATION REPORT

Category Precision Recall F1-Score Support

0 0.83 0.89 0.86 187148
1 0.87 0.81 0.84 177045

Macro Avg 0.85 0.85 0.85 364193
Weighted Avg 0.85 0.85 0.85 364193

Overall Accuracy 0.8509

where the output is a continuous value.

V. OPTIMIZATION

A. Optimization with Grid-Search

Once a model is chosen based on the comparison and
cross-validation results, optimization involves fine-tuning the
model’s hyperparameters or adjusting its configuration to
improve performance. The MSE is 13679515562653.578 and
the R-squared is 0.9777 after Grid Search. The most-probable
explanation the mean square error is excessively high with
a good R-squared value is the nature of our dataset. Since
we are dealing with very high property values, it contributes
to the high MSE. Furthermore, it is likely the model is
having difficulties with small subsets of data. For example,
small residential building data is being referenced against
New York’s skyscrapers, which may explain this unusual
distribution. Thus we can infer that the model performs well
for the majority of our dataset. Since it performs poorly on
small subsets of data, further processing to separate outliers
such as skyscrapers may aid in reducing the MSE.

B. Further Analysis Based on Visualizations

Fig. 9. 2017 Price Distribution of Buildings in Block 16 Before Outlier
Removal.

Visualizing data offers valuable insights into our dataset,
providing a visual that eases understanding ans guides de-
cisions on how to proceed with data manipulation. In this
context, the bar plot in Figure V-B illustrates the distribution
of building valuations within block 16 in 2017. It illustrates
a concentration of values within the range of 100,000 to

800,000, suggesting a common valuation pattern among prop-
erties in the block. However, the plot also reveals outliers
at both ends of the spectrum, with some properties exhibit-
ing high values nearing 700,000,000 and others showing
remarkably low values approaching zero. These outliers, may
represent unique cases or anomalies influenced by factors such
as property condition, location-specific characteristics, or the
type of building represented. Contextualizing these findings
within real estate in New York City depicts the complexity
of property valuation across blocks. It’s important to mention
that this is only for one block of one year. New York has
hundreds of blocks and the price valuation differs by year, so
the trends are exacerbated when you consider the vastness of
our dataset. Visualizing these trends underlines the need for
data analysis and interpretation for informed decision-making
within real estate.

Fig. 10. 2017 Price Distribution of Buildings in Block 16 After Outlier
Removal

The data in figure V-B is right skewed and is normally
distributed. It depicts the data after outlier removal which
provides us with a more detailed image of our dataset. Using
the data after outlier removal can help improve our algorithm
by lowering the MSE.

C. User Interactivity

The data preparation for the heat map was altered to provide
a more relevant visual. Our approach revolved around cleaning
and preparing a dataset of property values, which involves re-
moving incomplete records and eliminating statistical outliers
based on the IQR to address extreme value discrepancies.
We applied a logarithmic transformation to the ’FULLVAL’
property value column to normalize the data and mitigate skew,
although we opted to utilize the original ’FULLVAL’ for model
training and predictions.

Our predictive model, built with an XGBRegressor, is
trained using block, tax class, building class, lot frontage, lot
depth, stories, and the year. This setup is encapsulated within
a Scikit-learn pipeline configured to manage preprocessing
for both numerical and categorical data automatically. Key
preprocessing steps include imputation for missing values and



scaling/encoding to ensure data is appropriately formatted for
modeling.

The interactive component of the system allows users to
input a specific year to generate predictions, dynamically
adjusting the dataset to reflect this temporal aspect. This
functionality is particularly useful for analyzing trends or
making future projections based on past and current data.
After the model makes predictions for the specified year, these
values are visualized on a geographic heatmap V-C.

Fig. 11. Heat Map of Predicted FullVal for 2025

For the visualization, we utilize Cartopy within Matplotlib
to overlay the predicted property values onto a map. The
data points are represented in a color gradient—ranging from
blue to red—to depict the spectrum of property values from
low to high. This not only makes the data easier to interpret
visually but also highlights geographic patterns and anomalies
in property valuation. The color mapping and geographic
detailing provide a rich, intuitive understanding of spatial
variations in property values, making it a powerful tool for
stakeholders needing to make informed decisions based on
property market dynamics.

Fig. 12. Code to take User Input

The model can also take input for block, tax class, building
class, lot frontage, lot depth, stories, and the year and provide
a prediction for a specific property. This system utilized the
predictive model described in depth in sections II, III, and IV.

CONCLUSION

From completing the task of designing our own machine-
learning pipeline with cross-validation and optimization, we
were able to discover more regarding the intricacies of our
dataset. Beginning with data pre-processing, we addressed
missing values through imputation and ensured uniformity
in feature scaling to prepare the dataset for analysis. The
implementation of cross-validation techniques then enabled
us to assess model performance, allowing for a more ac-
curate evaluation of our chosen classifiers. Meeting project
requirements, we experimented with different cross-validation
approaches, identifying the most generalized model for our
dataset. Employing GridSearchCV, we systematically explored
parameter combinations, striving to improve the model’s gen-
eralizability and predictive accuracy. Throughout the project,
we reported evaluation metrics, including ROC curves for
classification tasks and error metrics for regression models.
Being able to visualize the repeated stratified k-fold cross-
validation furthered our understanding of model performance
across multiple iterations. We also aim to incorporate an AI
model to update with real time events and produce a better
human-like interface. Our model initially predicted values
within a few hundred-thousand dollars of the market value,
but it gives an exact number. Have added a classification
technique that takes a categorical approach instead to better
evaluate our model’s metrics. Overall, we hope to continue
our development of a model for predicting property value that
can be implemented for any location.

REFERENCES

[1] D. of F. (2020, May 26). Property valuation and assessment data: NYC
open data.Property Valuation and Assessment Data—NYC Open Data.
Retrieved April 4, 2024,from https://data.cityofnewyork.us/City-
Government/Property-Valuation-and-Assessment-Data/yjxr-
fw8i/about data

[2] Finance, D. of. (2024, January 23). Property valuation and assessment
data tax classes 1,2,3,4: NYC open data. Property Valuation and As-
sessment Data Tax Classes 1,2,3,4 — NYC Open Data. Retrieved April
4, 2024, from https://data.cityofnewyork.us/City-Government/Property-
Valuation-and-Assessment-Data-Tax-Classes/8y4t-faws/about data

[3] Eswpad. (2024, January 12). Understanding “Zero” and “Nil”
Valuation with e.surv Surveyors. e.surv Chartered Surveyors.
https://www.esurv.co.uk/home-owners/what-is-a-zero-valuation


	Introduction
	Data Pre-processing
	Data Selection
	Data Imputation
	Scaling

	 Model Comparisons
	Training and Evaluation
	Choosing A Model

	 Cross-Validation
	K-Fold Cross-Validation Execution
	K-Fold Cross-Validation Execution

	Optimization
	Optimization with Grid-Search
	Further Analysis Based on Visualizations
	User Interactivity

	References

